

(d)

(e)

				Sub	ject	Cod	le: k	COE	049
Roll No:									

Printed Page: 1 of 2

4

BTECH (SEM IV) THEORY EXAMINATION 2021-22 DIGITAL ELECTRONICS

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

Attem	pt all questions in brief.	2x10=20
Qno	Questions	СО
(a)	Define the term binary codes with an example.	1
(b)	Differentiate between SOP & POS form.	1
(c)	Define the term combinational logic with an example.	2
(d)	Discuss universal gates.	2
(e)	Explain the term Latch.	3
(f)	Explain the term registers.	3
(g)	Define Asynchronous circuits.	4
(h)	Discuss hazards.	4
(i)	Discuss logic family and its use.	5
(i)	What do you mean by a memory?	5

SECTION B

4 • F	xucm	of any three of the following.	J — JU
	Qno	Questions	CO
	(a)	Explain the implementation of an X-OR gate with NAND) [
		implementation.	
	(b)	Illustrate the working of Serial and parallel adders and differentiate the	2
		operations.	
	(c)	Explain the working of J-K Flip-Flop.	3

SECTION C

Define the state reduction steps for a machine.

Discuss different types of RAM memory cell.

3. Attempt any *one* part of the following: 10x1 = 10

		-
Qno	Questions	CO
(a)	Minimize the following Boolean function using K Map	1
	$f(A,B,C,D) = \sum m(0,1,4,8,9,10) + \sum d(2,11)$	
(b)	Explain different steps associated to Quine Mc Culsy (Tabular	1
	Method) of minimizing Boolean Functions.	

4. Attempt any *one* part of the following: 10x1 = 10

Qno	Questions	CO
(a)	Design a 4-bit magnitude comparator.	2
(b)	Design a full adder and full subtractor using NAND gates only.	2

5. Attempt any *one* part of the following: 10x1 = 10

	v i e	
Qno	Questions	CO
(a)	Describe the Design of J-K FF using T FF.	3
(b)	Describe the operations and applications of a Serial-in Parallel-out	3
	Shift Register with a neat diagram.	

Roll No: Subject Code: KOE049

Printed Page: 2 of 2

BTECH (SEM IV) THEORY EXAMINATION 2021-22 DIGITAL ELECTRONICS

6. Attempt any *one* part of the following: 10x1 = 10

Qno	Questions	CO
(a)	Design a sequential circuit with two flip flops A & B and one input x.	4
	when $x = 0$, the state of the circuit remains the same and when $x = 1$	
	the circuit passes through the state transitions from 00 to 01 to 11 to 10	
	back to 00 and repeat.	
(b)	A sequential circuit has two J K flip flops A & B, two inputs X & Y, and one output Z. The equations defining this system are as following:	4
	$J_A = BX + B'Y'$ $K_A = B'XY'$ $J_B = A'X$ $K_B = A + XY'$	
	Z = AXY + BX'Y'	
	Design the circuit.	

7. Attempt any *one* part of the following: 10x1 = 10

Qno	Questions	CO
(a)	Explain the working and structure of EEPROM cell.	5
(b)	Describe the difference between PAL & PLA using neat diagram and suitable examples.	5
	suitable examples.	
		9.
	, Q'V'	D
	00.	
	· ?·	
	20,1	
	000	
	-95'	
	, ,00	
	QX.	