

|          | Printed Page: 1 of |  |  |  | of 2 |   |      |       |      |     |     |     |   |
|----------|--------------------|--|--|--|------|---|------|-------|------|-----|-----|-----|---|
|          |                    |  |  |  |      | S | ubje | ect ( | Code | : K | AS2 | 01T | • |
| Roll No: |                    |  |  |  |      |   |      |       |      |     |     |     |   |

## BTECH (SEM II) THEORY EXAMINATION 2021-22 ENGINEERING PHYSICS

Time: 3 Hours Total Marks: 100

**Notes:** 

- Attempt all Sections and assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

| SECT  | ION-A                                                                           | Attempt All of the following Questions in brief      | Marks(10X2=20)         | CO |  |  |
|-------|---------------------------------------------------------------------------------|------------------------------------------------------|------------------------|----|--|--|
| Q1(a) | What is fr                                                                      | ame of reference in motion?                          |                        | 1  |  |  |
| Q1(b) | Show that                                                                       | massless particles can exist only if the they move w | ith the speed of light | 1  |  |  |
|       | and their energy E and momentum p must have the relation E= pc.                 |                                                      |                        |    |  |  |
| Q1(c) | (c) In an electromagnetic wave, the electric and magnetic fields are 100V/m and |                                                      |                        |    |  |  |
|       | 0.265A/m. What is the maximum energy flow                                       |                                                      |                        |    |  |  |
| Q1(d) | d) Define the concept of Skin depth for high and low frequency waveforms.       |                                                      |                        |    |  |  |
| Q1(e) | What is C                                                                       | ompton effect and Compton shift?                     |                        | 3  |  |  |
| Q1(f) | Why is bla                                                                      | ack the best emitter?                                |                        | 3  |  |  |
| Q1(g) | Why the c                                                                       | enter of Newton's ring in reflected system is dark?  |                        | 4  |  |  |
| Q1(h) | Explain Rayleigh's criterion of resolution.                                     |                                                      |                        |    |  |  |
| Q1(i) | What do y                                                                       | ou mean by acceptance angle and cone for an optical  | l fiber?               | 5  |  |  |
| Q1(j) | Differentia                                                                     | ate spontaneous emission and stimulated emission.    |                        | 50 |  |  |

| SECT                                                                                | ION-B                   | Attempt ANY THREE of the following Questions                               | Marks(3X10=30)                   | CO |  |
|-------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------|----------------------------------|----|--|
| Q2(a) What is special theory of relativity? Derive Lorentz transformation equation. |                         |                                                                            |                                  |    |  |
| Q2(b)                                                                               | Assuming                | that all the energy from a 1000 watt lamp is radiated                      | uniformly; calculate             | 2  |  |
|                                                                                     | the averag              | ge values of the intensities of electric and magnetic fie                  | lds of radiation at a            |    |  |
|                                                                                     | distance o              | of 2m from lamp.                                                           |                                  |    |  |
| Q2(c)                                                                               |                         | the energy difference between the ground state and th                      | e first excited state            | 3  |  |
|                                                                                     | for an elec             | ctron in a one-dimensional rigid box of length 25Å.                        |                                  |    |  |
| Q2(d)                                                                               | Newton's                | rings are observed in reflected light of wavelength 59                     | 000A <sup>0</sup> . The diameter | 4  |  |
|                                                                                     | of 10 <sup>th</sup> dan | rk ring is 0.50cm. Find the radius of curvature of the l                   | ens.                             |    |  |
| Q2(e)                                                                               | A step ind              | lex fibre has $\mu_1 = 1.466$ and $\mu_2 = 1.46$ where $\mu_1$ and $\mu_2$ | are refractive indices           | 5  |  |
|                                                                                     | of core an              | d cladding respectively. If the operating wavelength of                    | of the rays is 0.85 μm           |    |  |
|                                                                                     | and the di              | ameter of the core = $50 \mu m$ , calculate the cut-off para               | meter and the number             |    |  |
|                                                                                     | of modes                | which the fibre will support.                                              |                                  |    |  |
| •                                                                                   |                         | O.V                                                                        | _                                |    |  |

| SECT  | ION-C      | Attempt ANY ONE following Question                               | Marks (1X10=10)         | CO |
|-------|------------|------------------------------------------------------------------|-------------------------|----|
| Q3(a) | What was   | the object of conducting Michelson-Morley exp                    | eriment? Illustrate the | 1  |
|       | experimer  | nt with proper diagram and necessary mathematical                | derivations. Also state |    |
|       | the outcor | 1 1                                                              |                         |    |
|       |            | 00/                                                              |                         |    |
| Q3(b) | Deduce E   | instein's mass –energy relation E= mc <sup>2</sup> . Give some e | evidence showing its    | 1  |
|       | validity.  | 7                                                                |                         |    |

| SECT  | ION-C      | Attempt ANY ONE following Question                     | Marks (1X10=10) | CO |
|-------|------------|--------------------------------------------------------|-----------------|----|
| Q4(a) | Deduce tl  | ne Maxwell's equations for free space and prove that   | electromagnetic | 2  |
|       | waves are  | transverse in nature.                                  |                 |    |
| Q4(b) | Define rac | liation pressure and momentum of electromagnetic wave. | Also determine  | 2  |
|       | an express | sion for radiation pressure and momentum.              |                 |    |



|          |  |  |  | Subject Code: KAS201T |  |  |  |  |  |  |
|----------|--|--|--|-----------------------|--|--|--|--|--|--|
| Roll No: |  |  |  |                       |  |  |  |  |  |  |

Printed Page: 2 of 2

## BTECH (SEM II) THEORY EXAMINATION 2021-22 ENGINEERING PHYSICS

| SECT  | ION-C A     | ttempt AN   | Y ONE following Question   |             | Marks (1X10=10)        | CO |
|-------|-------------|-------------|----------------------------|-------------|------------------------|----|
| Q5(a) | What is the | physical    | significance of a wave     | function? D | erive Schrodinger time | 3  |
|       | independent | wave equa   | ation.                     |             |                        |    |
| Q5(b) | What is Con | npton effec | et? Deduce an expression f | or Compton  | shift.                 | 3  |

| SECT | ION-C                    | Attempt ANY ONE following Question                                                                                                                                                               | Marks (1X10=10)       | CO |
|------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----|
|      | a diffracti<br>resolving | ayleigh criterion of resolution how one can increase<br>on grating? Using Rayleigh criterion for just res<br>power of grating is equal to nN, where n is the orde<br>no of lines on the grating. | olution show that the |    |
|      |                          | ne phenomena of Fraunhofer diffraction at a single tensities of the successive maximum are nearly 1:                                                                                             |                       |    |

| SECT  | ION-C | Attempt ANY ONE following Question                                                               | Marks (1X10=10)     | CO |
|-------|-------|--------------------------------------------------------------------------------------------------|---------------------|----|
|       |       | optical fibre with a core diameter large enough has a core refr                                  | ` /                 | 5  |
|       |       | ding refractive index 1.47. Determine                                                            |                     |    |
|       |       | ical angle at the core cladding interface,                                                       |                     |    |
|       |       | merical aperture for the fibre                                                                   |                     |    |
| Q7(b) |       | ceptance angle in air for the fibre.  you mean by population inversion? Describe the principle a | and working of Ruby | 5  |
| Q/(b) |       | em with the help of neat diagram.                                                                | and working of Ruby |    |
|       |       | QP22                                                                                             | 1/1,55.             |    |
|       |       | 29.01.2022                                                                                       |                     |    |
|       |       |                                                                                                  |                     |    |
|       |       | Ci.                                                                                              |                     |    |
|       |       | .03                                                                                              |                     |    |
|       |       | 69.                                                                                              |                     |    |
|       |       |                                                                                                  |                     |    |
|       |       | 2                                                                                                |                     |    |
|       |       |                                                                                                  |                     |    |
|       |       |                                                                                                  |                     |    |
|       |       |                                                                                                  |                     |    |
|       |       | 75                                                                                               |                     |    |
|       |       |                                                                                                  |                     |    |
|       |       |                                                                                                  |                     |    |
|       |       |                                                                                                  |                     |    |
|       |       |                                                                                                  |                     |    |