Printed Page: 1 of 2 Subject Code: KEC403

Roll No:

BTECH (SEM IV) THEORY EXAMINATION 2021-22 SIGNAL SYSTEM

Time: 3 Hours

Note: Attempt all Sections. If you require any missing data, then choose suitably.

SECTION A

1. Attempt all questions in brief.

Qno	Questions	CO
(a)	Define a signal with example.	1
(b)	Draw the signal $u(n) - u(n-3)$.	1
(c)	Check whether the given system is causal and Time variant $y(t) = t.x(t)$.	1
(d)	State Nyquist theorem.	5
(e)	Determine the sufficient condition for the existence of CTFT.	3
(f)	Find Z-Transform of the signal $x(n) = (1/2)^n . u(n)$ and its ROC.	4
(g)	Determine the fundamental period of the following, if the signal is periodic $x(t) = cos(\pi t) + cos(2\pi t)$.	1
(h)	State the expression of Convolution Integral.	2
(i)	Compare CTFT and DTFT.	3
(j)	Find the z transform of u(n).	4

SECTION B

2. Attempt any three of the following:

(a)

(b)

(d)

(e)

Qno Questions CO i) State and prove the frequency shifting theorem of CTFT. 3 ii) Explain the principle of Linearity property corresponding to CTFT. Consider $x(t) = \cos(2\pi f_0 t)$. Determine it is a power signal or energy 1 signal. Determine the even and odd components of the following signals 1 (c) $x(t) = \cos(t) + \sin(t) + \cos(t) \cdot \sin(t)$ i) $\mathbf{x}(\mathbf{n}) = \{1, 1, 1, 1, 1\}$ ii) Find the Fourier transform of the signal given below: 3 $x(t) = e^{-at} u(t)$ and sketch the magnitude and phase spectrum. Using Fourier transform, find the convolution of 3

$x_1(t) = e^{-2t} u(t), x_2(t) = e^{-3t} u(t)$

SECTION C

3. Attempt any one part of the following:

10*1	=	10
------	---	----

10*3 = 30

Qno	Questions	CO
(a)	Find the inverse Laplace of the following $X(S) = \frac{2}{(S+4)(s-1)}$ if the region of convergence is a) -4 < Re{s} < 1	3

Total Marks: 100

2*10 = 20

Printed Page: 2 of 2 Subject Code: KEC403

Roll No:

BTECH (SEM IV) THEORY EXAMINATION 2021-22 SIGNAL SYSTEM

	b) $\operatorname{Re}\{s\} > 1$	
(b)	Using Laplace transform obtain the impulse response of the given	3
	second-order system	
	$\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = x(t).$	
	dt^2 dt dt dt	

4. Attempt any *one* part of the following:

10 * 1 = 10

Questions	CO
Determine the Z transform of $x(n) = cos(\omega_0 n) u(n)$ and sketch the	4
ROC.	
Determine the inverse Z transform of the following function	4
$H(z) = \frac{0.2z}{(z+0.4)(z-0.2)}$ ROC : $ z > 0.4$	
	Determine the Z transform of $x(n) = cos(\omega_0 n) u(n)$ and sketch the ROC. Determine the inverse Z transform of the following function

5. Attempt any *one* part of the following:

Qno	Questions	CO
(a)	Explain and proof Parseval's Theorem.	3
(b)	Analyze the Discrete Time Fourier Transform of the following	3
	$\mathbf{x}(n) = 0.5^n u(n) + 2^{-n} u(-n-1)$	5
		5

6. Attempt any *one* part of the following:

10*1 = 10

10*1 = 10

Qno	Questions	СО
(a)	Implement the Convolution integral on the signals $x(t) = e^{-2t} u(t)$ and	2
	$\mathbf{h}(\mathbf{t}) = \mathbf{u}(\mathbf{t}).$	
(b)	Implement the Convolution sum on the signals $x(n) = a^n u(n)$ and $h(n)$	2
	= u(n).	

7. Attempt any *one* part of the following:

10*1 = 10

Qno	Questions	CO
(a)	State and prove the Sampling theorem and discuss the effect of under- sampling.	5
(b)	Explain reconstruction of signal from its samples using Interpolation.	5