

# Subject Code: BCS402 Roll No:

#### BTECH

## (SEM IV) THEORY EXAMINATION 2023-24 THEORY OF AUTOMATA AND FORMAL LANGUAGES

### TIME: 3 HRS

1.

**M.MARKS: 70** 

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

|       | SECTION A                                                                                                                                                                                   |        |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Attem | pt <i>all</i> questions in brief. $2 \ge 7 = 14$                                                                                                                                            |        |
| a.    | Give the mathematical definition of DFA. Differentiate between NFA and DFA.                                                                                                                 |        |
| b.    | Construct Deterministic Finite Automata (DFA) to accept string that always ends with 101 over alphabet $\Sigma = \{0,1\}$                                                                   |        |
| c.    | Give regular expressions that represent the language (L), which has all binary strings having two consecutive 0s and two consecutive 1s over the alphabet $\Sigma = \{0, 1\}$ .             |        |
| d.    | Compute the Language generated by the given CFG G = ({S}, {a, b}, P, S}<br>where P is defined by:<br>$\{S \rightarrow SS, S \rightarrow ab, S \rightarrow ba, S \rightarrow \epsilon\}$     |        |
| e.    | Let G be the grammar<br>$S \rightarrow 0B \mid 1A$<br>$A \rightarrow 0 \mid 0S \mid 1AA$<br>$B \rightarrow 1 \mid 1S \mid 0BB$<br>Determine the leftmost derivation for the string 00110101 | 2.3    |
| f.    | Explain the concept of two stack PDA. Give an example of a language that is accepted by two stack PDA but not accepted by normal one stack PDA.                                             | r<br>P |
| g.    | Explain Multi Tape Turing Machine.                                                                                                                                                          | ]      |

## SECTION B

### 2.

|       | SECTION B                                                                             |
|-------|---------------------------------------------------------------------------------------|
| Atten | pt any <i>three</i> of the following: $7 \times 3 = 21$                               |
| a.    | Construct a Finite automata (DFA) which accepts all binary numbers whose              |
|       | decimal equivalent is divisible by 4 over $\Sigma = \{0, 1\}$ .                       |
| b.    | Compute the regular expression using Arden's Theorem for the following                |
|       | DFA.                                                                                  |
|       |                                                                                       |
|       |                                                                                       |
|       |                                                                                       |
|       |                                                                                       |
|       | 1                                                                                     |
| c.    | Write an equivalent left linear grammar from the given right linear grammar.          |
|       | S→0A  1B                                                                              |
|       | A→0C  1A  0                                                                           |
|       | $B \rightarrow 1B  1A 1$                                                              |
|       | C→0  0A                                                                               |
| d.    | Differentiate between DPDA and NPDA. Construct a PDA that accepts                     |
|       | language L = { $a^n b^n \mid n \ge 1$ }.                                              |
| e.    | Differentiate between Deterministic Turing machine and Non-Deterministic              |
|       | Turing machine. Design a Turing machine for the language L={ww   w $\varepsilon$ (a + |
|       | b)*}.                                                                                 |

1 | Page



### BTECH (SEM IV) THEORY EXAMINATION 2023-24 THEORY OF AUTOMATA AND FORMAL LANGUAGES

#### **TIME: 3 HRS**

3.

4.

5.

6.

 $S \rightarrow 0S1 | A$  $A \rightarrow 1A0 | S | \varepsilon$  **M.MARKS: 70** 

## SECTION C



| 2 | Ρ | а | g | е |
|---|---|---|---|---|
|---|---|---|---|---|



Roll No:

# BTECH

(SEM IV) THEORY EXAMINATION 2023-24

# THEORY OF AUTOMATA AND FORMAL LANGUAGES

#### TIME: 3 HRS

7.

- M.MARKS: 70
- b. Find the equivalent CFG of the following PDA  $P = (\{q0, q1,\}, \{a, b\}, \{a, z0\}, \delta, q0, z0) \text{ where } \delta \text{ is given by:}$   $\delta (q0, a, z0) = (q0, az0)$   $\delta (q0, a, a) = (q1, aa)$   $\delta (q1, a, a) = (q1, \epsilon)$   $\delta (q1, \epsilon, z0) = (q1, \epsilon)$

| Atten | npt any <i>one</i> part of the following: $7 \ge 1 = 7$                             |   |  |
|-------|-------------------------------------------------------------------------------------|---|--|
| a.    | Construct Turing Machine that accepts language $L=\{a^{2n}b^n \mid n \ge 1\}$ . Als | 0 |  |
|       | show the instantaneous description for the string $w = aaaabb$ .                    |   |  |
| b.    | Explain the any two of the following:                                               |   |  |
|       | i. Universal Turing Machine.                                                        |   |  |
|       | ii. Post Correspondence Problem.                                                    |   |  |
|       | iii. Recursive and recursively Enumerable Languages                                 |   |  |

21-Aug202A 1:31:32 PM 147.55.242.132