

**Roll No:** 

#### **BTECH**

(SEM VI) THEORY EXAMINATION 2023-24

### **CONTROL SYSTEM**

#### TIME: 3 HRS

**M.MARKS: 100** 

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

|       | SECTION A                                                                                        |        |      |     |
|-------|--------------------------------------------------------------------------------------------------|--------|------|-----|
| 1.    | Attempt <i>all</i> questions in brief.                                                           | 2 x 10 | = 20 | _   |
| Q no. | Question                                                                                         | Marks  | СО   |     |
| a.    | What is the difference between an open and closed loop system?                                   | 2      | 1    |     |
| b.    | In most of the cases, disturbances are introduced in process in closed loop control system. Why? | 2      | 1    |     |
| c.    | What are the conditions for a system to be controllable?                                         | 2      | 2    |     |
| d.    | What are the advantages of state-space model over transfer function?                             | 2      | 2    |     |
| e.    | What is the advantage of calculating overshoot control system?                                   | 2      | 3    |     |
| f.    | What is the difference between fall time and rise time?                                          | 2      | 3    |     |
| g.    | How location of poles is related to stability?                                                   | 2      | 4    |     |
| h.    | How is departure angle measured?                                                                 | 2      | 4    | 0   |
| i.    | What is the significance of gain and phase margin?                                               | 2      | 5    | sit |
| j.    | What is the significance of polar coordinates                                                    | 2      | 5    |     |
| 2.    | SECTION B<br>Attempt any <i>three</i> of the following:                                          | 6      | 20   | レ   |
| a.    | Obtain the Transfer function of the given block diagram                                          | 10     | 1    |     |

#### **SECTION B**

#### Attempt any *three* of the following: 2.





Subject Code: KEC602

**Roll No:** 

# BTECH

(SEM VI) THEORY EXAMINATION 2023-24

#### CONTROL SYSTEM

#### TIME: 3 HRS

**M.MARKS: 100** 

| с. | The open loop transfer function of a unity feedback system is given by                                                                                                                 | 10 | 3 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|
|    | $G(S) = \frac{K}{S(1+ST)}$                                                                                                                                                             |    |   |
|    | Where 'K' & 'T' are positive constants. By what factor should the amplifier gain be reduced so that the peak overshoot of unit step response of the system is reduced from 75% to 25%. |    |   |
| d. | Using Routh Hurwitz Criterion, discuss the stability of the characteristic equation: $2s^5 + 2s^4 + s^3 + 2s^2 + 2$                                                                    | 10 | 4 |
| e. | What is gain margin, phase margin, gain crossover frequency, and phase cross frequency? What is the practical use of these parameters?                                                 | 10 | 5 |

## **SECTION C**

### 3. Attempt any *one* part of the following:

|    | Therein per uny one part of the following.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |     |    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|
| a. | Construct the signal flow graph for the following set of simultaneous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10  | 1   | al |
|    | equations and obtain the overall transfer function using Mason's gain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |     | N  |
|    | formula.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | . ( |    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |     |    |
|    | X2 = A21X1 + A23X3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | V   |    |
|    | X3 = A31X1 + A32X2 + A33X3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3   | •   |    |
|    | X4 = A42X2 + A43X3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2 |     |    |
| b. | Reduce the block diagram to its canonical form and obtain C(S)/R(S).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10  | 1   |    |
|    | $ \begin{array}{c} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & $ |     |     |    |

4. Attempt any one part of the following: a. For a single input system  $\dot{X} = AX + BU$  Y = CX  $A = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 1 \end{bmatrix}$ Check the controllability & observability of the system. b. Examine the Controllability and Observability of the following system:  $A - \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} B - \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} C - \begin{bmatrix} 10 & 5 & 1 \end{bmatrix}$ 

**2 |** P a g e





Roll No:

**BTECH** 

(SEM VI) THEORY EXAMINATION 2023-24

#### **CONTROL SYSTEM**

TIME: 3 HRS

**M.MARKS: 100** 

| 5. | Attempt any one part of the following:                                     |          |            |         |
|----|----------------------------------------------------------------------------|----------|------------|---------|
| a. | Consider a standard second order system given by                           | 10       | 3          |         |
|    | $an^2$                                                                     |          |            |         |
|    | $w_n$                                                                      |          |            |         |
|    | $s^2{+}2\zeta w_ns{+}w_n^2$                                                |          |            |         |
|    | The correlation between the maximum peak overshoot in the time domain      |          |            |         |
|    | and the resonant peak in the frequency domain exists when:                 |          |            |         |
| b. | The output of a standard second-order system for a unit-step input is      | 10       | 3          |         |
|    | given as                                                                   |          |            |         |
|    | $y(t)=1-rac{2}{\sqrt{3}}e^{-t}\cos\left(\sqrt{3}t-rac{\pi}{6} ight)$     |          |            |         |
|    | What is the transfer function of the system?                               |          |            | 6       |
| 6. | Attempt any <i>one</i> part of the following:                              |          | C          | ,<br>Yo |
| a. | Using Routh Hurwitz Criterion, discuss the stability of the characteristic | 10       | 4          | V       |
|    | equation:                                                                  |          |            |         |
|    | $F(s) = 2s^5 + 3s^4 + 2s^3 + s^2 + 2s + 2$                                 | رنى      | •          |         |
| b. | Consider a unity-feedback control system with the following                | 10       | 4          |         |
|    | feedforward transfer function:                                             |          |            |         |
|    | K K                                                                        |          |            |         |
|    | $G(s) = \frac{1}{s(s+1)(s+2)}$                                             |          |            |         |
|    | Draw plot the root locus.                                                  |          |            |         |
|    | <u>്</u> .                                                                 | <u>.</u> | . <u> </u> |         |
| 7. | Attempt any <i>one</i> part of the following:                              |          |            |         |

| C(a) =       | K             |
|--------------|---------------|
| G(S) =       | s(s+1)(s+2)   |
| Draw plot th | e root locus. |

| a. Sketch the Bode Plot for the given system and comment on stability of the used 10 systems:<br>$G(s)H(s) = \frac{4}{s(1+0.5s)(1+0.08s)}$ |   |
|--------------------------------------------------------------------------------------------------------------------------------------------|---|
| systems:<br>$G(s)H(s) = \frac{4}{s(1+0.5s)(1+0.08s)}$                                                                                      | 5 |
| $G(s)H(s) = \frac{4}{s(1+0.5s)(1+0.08s)}$                                                                                                  |   |
| s(1+0.5s)(1+0.08s)                                                                                                                         |   |
|                                                                                                                                            |   |
|                                                                                                                                            |   |
| b. Construct the Bode plots for a unity feedback system whose open-loop 10                                                                 | 5 |
| transfer function is given by $[0.25(1+0.5s)]/[s(1+2s)(1+4s)]$ .                                                                           |   |
| From the Bode plot, determine the following:                                                                                               |   |
| a) Gain and phase crossover frequencies,                                                                                                   |   |
| b) Gain and phase margin, and                                                                                                              |   |
| c) Comment on the stability of the system.                                                                                                 |   |