Printed Page: 1 of 2

Subject Code: KOE065

Roll No:

BTECH

(SEM VI) THEORY EXAMINATION 2023-24 **COMPUTER BASED NUMERICAL TECHNIQUES**

TIME: 3 HRS

M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably. SECTION A

1. Attempt all questions in brief.

a.	Explain the concept of error in a series approximation.	2		
b.	Give an example of a simple iteration method.			
c.	Evaluate Hermite's Interpolation.			
d.	What is the principle of finite difference?			
e.	Distinguish Newton's forward formula and backward formula for numerical differentiation.	2		
f.	Explain how Lagrange's interpolation can be used for numerical differentiation, even though it's primarily an interpolation method.			
g.	Enumerate types of errors.			
h.	Describe differential equation.			
i.	Explain boundary value problem.	2 0		
j.	Explain the calculation of a distillation column.	2		
	SECTION B	NV		
2.	Attempt any <i>three</i> of the following:			
a.	How are rounding and truncation techniques applied to numbers, and what are the	10		

SECTION B

Attempt any *three* of the following: 2.

a.	How are rounding and truncation techniques applied to numbers, and what are the	10
	implications of these operations on accuracy.	
b.	Compare and contrast the use of Gauss forward and backward interpolation formulas	10
	with central difference formulas like Stirling's, Bessel's, and Everett's formulas. When	
	might one type be preferred over the other?	
с.	State and derive Simpson's 1/3 rule for numerical integration. What are its advantages	10
	and limitations?	
d.	Using Picard's process of successive approximations, obtain a solution up to the fifth	10
	approximation of the equation $dy/dx = y + x$, such that $y = 1$ when $x = 0$.	
e.	Describe the application of finite difference method to solve eigenvalue problems.	10

SECTION C

X

3. Attempt any one part of the following:

a.	Explain the importance of error analysis and uncertainty quantification in scientific and	10
	engineering applications, and describe some common methods used for this purpose.	
b.	For the given function $f(x) = x^3 - x - 1$, a real root lies in between the interval [1,2]. Find the minimum number of iterations required to find the root up to the accuracy of two decimal points.	

4. Attempt any one part of the following:

a.	Find Solution using Everett's formula	10
	$\mathbf{x} \mathbf{f}(\mathbf{x})$	
	1 1	
	1.1 1	
	1.2 1.1	
	1.3 1.1	
	For x=1.15	
b.	How does Newton's divided difference formula differ from the standard Newton's	10
	forward and backward difference formulas? Explain its role in polynomial interpolation.	

Printed Page: 2 of 2

Roll No:

Subject Code: KOE065

BTECH

(SEM VI) THEORY EXAMINATION 2023-24 **COMPUTER BASED NUMERICAL TECHNIQUES**

M.MARKS: 100

TIME: 3 HRS

5. Attempt any one part of the following:

a.	What is the general form of Newton's forward difference formula? Derive the formula for the first and second-order approximations.		
b.	for the first and second-order approximations.Find Solution using Newton's Backward Difference formula x $f(x)$ x 1891461901661911811921931931101		

6. Attempt any *one* part of the following:

	x-11	
a.	Find y(0.2) for y' = $\frac{x-y}{2}$, $x_0=0$, $y_0=1$, with step length 0.1 using Runge-Kutta 2 method	10
	(1st order derivative)	
b.	Explain the significance of numerical methods in solving differential equations. Why are	10
	analytical solutions not always feasible, and how do numerical methods address these	.01
	limitations?	
7.	Attempt any <i>one</i> part of the following:	N.
a.	What is the significance of hyperbolic PDEs and how can they be solved numerically.	10
b.	Find the eigenvalues and eigenvectors of	10
	$(12 \ 0 \ 0)$	
	0 4 9/	
	(\cdot, \cdot)	
	O'··	
	1 10 4 97 1 10 4 97 1 10 10 10 10 10 10 10 10 10 10 10 10 10	

	/2	0	0\
R	0	3	4)
G	$\setminus 0$	4	9/